
python-tools-for-students
Documentation

Release 1be72ec

Sebastian Weigand

2020-08-22

Learning:

1 python-tools-for-students 2
1.1 Why python? . 2

1.2 Where are we with this project right now? . 3

1.3 What do you need? . 4

1.4 Who are we? . 4

1.5 How can YOU help? . 4

1.6 Why in english? . 4

1.7 Contributors . 5

2 Getting started 5
2.1 Run it locally . 5

2.2 Run it in the cloud . 7

3 Chapters 7
3.1 Using JuPyteR-Lab . 7

4 Examples 16

5 Cheat Sheets 16
5.1 Python . 16

5.2 Numpy . 16

5.3 Pandas . 16

5.4 Datascience . 17

6 Tutorials 17
6.1 Python . 17

7 Credits 17
7.1 Development Lead . 17

7.2 Contributors . 17

8 Contributing 17
8.1 Types of Contributions . 17

8.2 Structure of the project . 18

8.3 Getting Started! . 19

8.4 Testing . 20

8.5 Add your changes to the docs . 20

8.6 Style guide . 21

1

8.7 Pull Request Guidelines . 21

9 Indices and tables 22

1 python-tools-for-students

This projects aims to teach students the basics of how to use powerful Python Tools for the day to day
life at university:

• Solving equations

– Analytically

– Numerically

• Handling data

– Reading differently structured plaintext files

– Doing calculations on data

– Fitting of data

– Visualization (plotting)

1.1 Why python?

Python is one the fastest growing programming languages, it is easy to learn (i.e. compared to C), is
multi purpose (there is pretty much no task that can’t be done in python) and it has a rich eco system
of libraries for math, physics, engineering, data science and data evaluation in general.

2

https://github.com/students-teach-students/python-tools-for-students/actions
https://python-tools-for-students.readthedocs.io/en/latest/?badge=latest
https://nbviewer.jupyter.org/github/students-teach-students/python-tools-for-students/tree/master/material/
https://mybinder.org/v2/gh/students-teach-students/python-tools-for-students/master?urlpath=lab/tree/material
https://gitter.im/students-teach-students/python-tools-for-students?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge
https://stackoverflow.blog/2017/09/06/incredible-growth-python/

[]

1.2 Where are we with this project right now?

At the moment we are writing teaching material and gather ideas what to teach and build a useful
structure to teach the materials. Which is why this is your chance to tell us what you want to learn.
Just open an issue, write about what you want to learn (examples help with explanations) and we can
discuss if this should be part of this course or is too much of an edge case. And of course we are also
always happy if you want to contribute and teach others the skills you acquired.

3

1.3 What do you need?

• A base knowledge in Python

We won’t teach you python from the ground up, so you need to already have some basic knowl-
edge about python. For this purpose we recommend that you complete i.e. the SoloLearn
Python 3 Tutorial, which is also available as a free mobile app and/or watch the tutorials made
by sentdex

• A working python installation

The best way to get Python up and running for your OS is to download Anaconda, which is
crossplatform and comes with most tools needed prebundled (batteries included).

• A github account

The github account is needed so you can write issues and tell us what YOU want to learn, what
we should improve or if we did something wrong.

1.4 Who are we?

We are a group of master students from TU-Berlin (Germany), who want to share their experience with
python tools, which make the day to day life at university (homework, writing reports and evaluating
data) easier.

1.5 How can YOU help?

Since all contributors are working on this in their spare time, we could use your help and encourage
you to contribute to this project as well. This will also give you inside on how to work on a project on
github.

What we need:

• Correction reader: Since we all are only humans, it might happen that there are spelling errors,
so if you see them feel free to correct them.

• Creators: Since we are lacking manpower, we would highly appreciate if you would share your
knowledge as well and help us giving people the knowledge they need.

• Summary writer: Since writing the material itself is very time consuming, we would love for the
community to write a summary in the style of a TL;DR, for the material we provide.

• Example writer: If you have an example/use case on how to use the knowledge gained here,
feel free to share it with everyone and we will review if it fits in the context of this project.

1.6 Why in english?

Even so we are a group of german students, the community of english speaking programmers is much
bigger than the one of programmers which only speak german. And since most problems you might
have, other people already had and solved them, it is of benefit to know the terms we introduce in
english, since this gives you access to a bigger knowledge base (google/duckduckgo and stackoverflow
are your friends).

4

https://www.sololearn.com/Course/Python/
https://www.sololearn.com/Course/Python/
https://www.youtube.com/watch?v=eXBD2bB9-RA&list=PLQVvvaa0QuDeAams7fkdcwOGBpGdHpXln
https://www.anaconda.com/distribution/

1.7 Contributors

Thanks goes to these wonderful people (emoji key):

This project follows the all-contributors specification. Contributions of any kind welcome!

2 Getting started

2.1 Run it locally

This is the ideal way, since you will have everything you need in your day to day student life installed
on your computer and all your data will persist.

Install python

Anaconda

Anaconda is our recommendation to install python on all operating systems, since it comes with most
needed packages prebundled (batteries included). Another bonus is that conda isn’t just a python
package manager like pip, but a package manager for multiple resources (i.e. node.js or latex) and
also an environment manager. Yet another bonus of conda is that it has a build pipeline in place,
which allows to install all packages from binary (no compiling needed from your side, which at times
can be pretty time consuming). Download the installer from the official website of Anaconda, follow
the instructions and you will be good to go.

Note: If you are using a Posix system (Linux/OsX) you don’t want to mess with the system python,
since many system tools rely on it, and in a worse case scenario you could break your Os.

Using Anaconda only if needed

Depending on other software you run on your computer, which depends on the installed system
python version (i.e. QtiPlot), you may not want to use Anaconda as your default python or add it to
the PATH variable, since this might cause conflicts and/or break that software.

Posix like Shells:

Users of a Posix like terminal (i.e. bash), can simply add the following function to their shell configu-
ration file (i.e. ~/.bashrc/~/.bash_profile)

Linux/MacOs:

ANACONDA_BIN_DIR=<anaconda-install-folder>/bin
use_conda(){

export PATH="$ANACONDA_BIN_DIR:$PATH"
}

Windows (git-bash, MinGw):

ANACONDA_BIN_DIR=<anaconda-install-folder>/bin
use_conda(){

CONDA_PATHS="$ANACONDA_INSTALL_DIR"
CONDA_PATHS="$ANACONDA_INSTALL_DIR\Library\mingw-w64\bin;$CONDA_PATHS"
CONDA_PATHS="$ANACONDA_INSTALL_DIR\Library\usr\bin;$CONDA_PATHS"

(continues on next page)

5

https://allcontributors.org/docs/en/emoji-key
https://github.com/all-contributors/all-contributors
https://nodejs.org/en/
https://www.latex-project.org/
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://www.anaconda.com/distribution/
https://en.wikipedia.org/wiki/PATH_(variable)

(continued from previous page)

CONDA_PATHS="$ANACONDA_INSTALL_DIR\Library\bin;$CONDA_PATHS"
CONDA_PATHS="$ANACONDA_INSTALL_DIR\Scripts;$CONDA_PATHS"
export PATH="$CONDA_PATHS:$PATH"

}

CMD on Windows:

If you are working on Windows and for some reason want to use CMD as your terminal, you can
create a batch script use_conda.bat in a folder which is part of the PATH variable (i.e. C:\Windows,
this needs Admin rights).

@echo off
SET ANACONDA_INSTALL_DIR=<anaconda-install-folder>
SET CONDA_PATHS=%ANACONDA_INSTALL_DIR%
SET CONDA_PATHS=%ANACONDA_INSTALL_DIR%\Library\mingw-w64\bin;%CONDA_PATHS%
SET CONDA_PATHS=%ANACONDA_INSTALL_DIR%\Library\usr\bin;%CONDA_PATHS%
SET CONDA_PATHS=%ANACONDA_INSTALL_DIR%\Library\bin;%CONDA_PATHS%
SET CONDA_PATHS=%ANACONDA_INSTALL_DIR%\Scripts;%CONDA_PATHS%
SET PATH=%CONDA_PATHS%;%PATH%

This will temporarily adds the conda paths to the open terminal and allows you to simply call
use_conda/use_conda.bat (which in both cases autocompletes), when you want to use conda. When
you open a new terminal, it won’t know about conda and work as it normally does.

Note: For this to work you need to replace <anaconda-install-folder>, with the actual path you
installed Anaconda to.

Note: If you use the other software more sparsely than the conda python, you could of course, just
turn this approach around and prepend the path to the system python to the PATH variable, when you
don’t want to use conda.

Pure CPython

If you don’t want to install conda, this Python installation guide can guide you through the process of
getting the pure CPython Interpreter.

Get the project

The sources for python-tools-for-students can be downloaded from the Github repo.

You can either clone the public repository:

$ git clone git://github.com/students-teach-students/python-tools-for-students

Note: This should be the preferred way since you can easily update the files by running $ git pull
and won’t clutter your download folder with incremental tarballs.

Or download the tarball:

$ curl -OJL https://github.com/students-teach-students/python-tools-for-students/tarball/
↪→master

6

https://docs.python-guide.org/starting/installation/
https://github.com/students-teach-students/python-tools-for-students
https://github.com/students-teach-students/python-tools-for-students/tarball/master

Once you have a copy of the source, you need to install the dependencies install it with:

$ pip install -r requirements.txt

Start jupyter lab

Once you have everything up and running you just need to open a terminal in the project folder (or
its material subfolder) and run the following command:

$ jupyter lab

After that jupyter lab will open a new tab in you default browser and you can start exploring.

Note: For Windows users we recommend to use Git bash to start jupyter lab, since CMD and
Powershell might not support all system calls we showcase.

Trouble shooting

If a new notebook isn’t working, it might be that added new requirements, just try installing them by
running this command in your terminal:

$ pip install -r requirements.txt

2.2 Run it in the cloud

If you don’t want to install python and just play around a bit with the notebooks, you can always just
run in our online demo at mybinder.org.

Warning: The binder session expires after 10 minutes inactivity and you will loose all your
progress if you didn’t download the files you edited/created.

3 Chapters

3.1 Using JuPyteR-Lab

What is jupyter-lab?

jupyter-lab is a browser based editor, with its main focus on editing jupyter-notebooks (which
we will also focus on). It is part of the jupyter project, which is an extension of the iPython
project. The iPython project and especially the iPython-Notebooks, were developed as an effort to
have a free and open source alternative to Mathematica, with a similar interface. This is why it also
uses an Input-Output-Cell-Structure and allows you to have your displayed data (i.e. tables, plots
or formulas) right next to the code that produced them.

The name JuPyteR is derived from the programming languages which its development initially was
focused on Julia, Python and R. But nowadays it can run a lot more programming languages (i.e.
bash, C++ or Fortran), as long as you have the needed interpreter or Compiler installed. For a list of
available kernels and how to install them, have a look here.

7

https://git-scm.com/downloads
https://mybinder.org/v2/gh/students-teach-students/python-tools-for-students/master?urlpath=lab/tree/material
https://github.com/jupyter/jupyter/wiki/Jupyter-kernels

Why jupyter-notebooks?

jupyter-notebooks are perfect for data exploration and a fast interactive working with code. That
you can directly see the output of your code, is helpful if you are new to some specific library or pro-
gramming in general, because you can see the effect of your changes directly after you applied them.
Also since this class is for students and aimed at their day to day university needs (i.e. homework),
it is also worth mentioning that jupyter-notebooks can be easily exported to PDF (File->Export
Notebook as...->Export Notebook to PDF).

Note:

If you want develop a library, GUI or similar, you should choose a proper IDE to do so.

How to start jupyter?

To start jupyter-lab simply open a shell/terminal/command line in the folder you want as the base
directory for your project and run:

jupyter lab

This will start the jupyter lab server locally and open its url in your default browser.

Note:

You can browse all the subdirectories of that folder in the File Browser but can’t see higher level
folders.

Different input modes

Jupyter-lab has two different modes to work with cells the command mode and the insert mode, are
used for different interactions with cells.

Command mode

The command mode is used to control the behavior of a whole cell or multiple cells, such as
creating, deleting or converting the type of cells. It can also be used to faster scroll your notebook,
since the navigation with the arrow keys will be on a cell level. To activate the command mode press
Esc. Being in command mode is recognizable by the grayed out interior of the cell, the missing blue
border around it and the missing courser.

8

Most commonly used shortkeys

• DD - Deletes currently marked cells (use with caution, this can’t be undone by Ctrl+Z)

• A - Creates a cell Above the current cell

• B - Creates a cell Below the current cell

• M - Convert current cell to a Markdown cell

• Y - Convert current cell to a Code cell

• R - Convert current cell to a Raw cell

• Shift+Arrow Keys - Mark multiple cells

Insert mode

As command mode allows you to interact with cells as a whole, insert mode allows you to change its
content.

To activate the insert mode press Enter. Being in insert mode is recognizable by the white interior
of the cell, the blue border around it and the blinking courser.

Most commonly used shortkeys

• Shift+Enter - Runs/Evaluates the cell and selects the cell below (also works in command mode)

• Ctrl+Enter - Runs/Evaluates cell inplace (also works in command mode)

• Tab - Autocomplete

Different input cell types

By default cell can have one of three types code cell, markdown cell or raw cell, each serve a
different purpose.

Code cells (Ctrl+Y)

The purpose of code cells should be quite self explanatory, these cells are used to write the code you
want to execute. Which kind of code you want to execute depends on what you told the cell its content
is (see Jupyter-magic), the default being Python or which ever kernel you started the notebook with.

[]:

9

Markdown cells

Markdown cells are used to document your code in a structured and RichText fashion. It allows you
to insert headings, lists, tables, images and even videos (for more information). The special extended
kind of Markdown used by jupyter notebooks also allows you to write formulas in LaTeX which are
then rendered accordingly.

The expression: $\int^{\infty}_{-\infty} f(x) dx$,

Evaluates to:
∫ ∞
−∞ f (x)dx

Note:

For the Markdown to be rendered the cell needs to be executed. If a Markdown cell is empty and was
executed it will show the boilerplate text:

'Type Markdown and LaTeX: α^2'

Raw cells

The purpose of raw cells is to be ignore in the normal notebook and if you convert the notebook
i.e. to a LaTeX document, it keeps its content intact and allows you to insert code in your converted
document, without having manually temper with the file after conversion over and over again.

Note:

There also are slide cells for presentations, which we might cover in a later chapter.

Jupyter-magic

The so called jupyter-magic is a collection of special commands, which allow you to influence be-
havior jupyter-lab and/or to run with different kernels. Jupyter-magic is grouped in two kinds, the
line-magic and cell magic. An other kind of magic is OSMagic (system calls), which depend on
the terminal you opened jupyter-lab with and return the same result as calling that command from
the terminal directly.

Note:

On Windows we recommended to run it in Git-Bash or a similar Posix based terminal, since those
terminals are much more powerful than the default Windows ones (CMD, Powershell).

Line magic

Commands listed as line magic only apply to a single line and start with a %.

10

Most commonly used line magic

• %lsmagic - Lists the available magic commands.

• %timeit - This is used to gain information about the execution time of a single line of code, by
running it multiple times and measuring the time it took to finish.

• %ls - Lists all files and directories (OS independent)

• %pycat <filename> - Displays the content of a file with Python syntax highlighting

• %matplotlib inline - This is normally used at the start of a notebook and includes figures
generated with matplotlib, which are returned by your code, directly in the corresponding
output cell.

• %matplotlib notebook - More or less the same as %matplotlib inline but the plots are more
interactive.

[1]: %lsmagic

[1]: Available line magics:
%alias %alias_magic %autoawait %autocall %automagic %autosave %bookmark %cd %clear␣
↪→ %cls %colors %conda %config %connect_info %copy %ddir %debug %dhist %dirs
↪→%doctest_mode %echo %ed %edit %env %gui %hist %history %killbgscripts %ldir
↪→%less %load %load_ext %loadpy %logoff %logon %logstart %logstate %logstop %ls
↪→%lsmagic %macro %magic %matplotlib %mkdir %more %notebook %page %pastebin %pdb
↪→%pdef %pdoc %pfile %pinfo %pinfo2 %pip %popd %pprint %precision %prun %psearch␣
↪→ %psource %pushd %pwd %pycat %pylab %qtconsole %quickref %recall %rehashx
↪→%reload_ext %ren %rep %rerun %reset %reset_selective %rmdir %run %save %sc
↪→%set_env %store %sx %system %tb %time %timeit %unalias %unload_ext %who %who_
↪→ls %whos %xdel %xmode

Available cell magics:
%%! %%HTML %%SVG %%bash %%capture %%cmd %%debug %%file %%html %%javascript %%js
↪→%%latex %%markdown %%perl %%prun %%pypy %%python %%python2 %%python3 %%ruby %
↪→%script %%sh %%svg %%sx %%system %%time %%timeit %%writefile

Automagic is ON, % prefix IS NOT needed for line magics.

Cell magic

Commands listed as cell magic apply to a whole cell and start with %%.

Most commonly used cell magic

• %%timeit - This is used to gain information about the execution time of a cell of code, by running
it multiple times and measuring the time it took to finish.

• %%bash - Makes the code written in a code cell be executed if it it was a bash script (this also
works for other languages, depending on which kernels you have installed).

• %%writefile <filename> - Writes the content of a cell, to a given file.

[2]: %%bash
ls -la

total 32
drwxrwxrwx 1 dafuq dafuq 4096 Jul 22 15:54 .
drwxrwxrwx 1 dafuq dafuq 4096 Jun 15 00:15 ..

(continues on next page)

11

(continued from previous page)

drwxrwxrwx 1 dafuq dafuq 4096 Feb 7 13:54 .ipynb_checkpoints
-rwxrwxrwx 1 dafuq dafuq 29504 Jul 22 15:55 1_Using-Jupyter-Lab.ipynb
drwxrwxrwx 1 dafuq dafuq 4096 Apr 14 16:19 images

System calls (OSMagics)

System calls start with a ! and execute a command as if it was run in the terminal jupyter lab was
started with.

Most commonly used system calls (posix like system)

• !ls -la - Lists all files and directories (also hidden ones), as well as their size and read, write,
execution rights.

• !head <filename> - Displays the first lines of a file. This is especially helpful if you want to
read text files, which contain a table like structure and you aren’t sure which is the column
separating character is.

• !tail <filename> - Displays the last lines of a file. This is useful if you want to see the progress
of a log file (what were the las written entrys).

• !pwd - Displays the path of the current working directory.

[3]: !ls -la

total 32
drwxr-xr-x 1 dafuq 197121 0 Jul 22 15:54 .
drwxr-xr-x 1 dafuq 197121 0 Jun 15 00:15 ..
drwxr-xr-x 1 dafuq 197121 0 Feb 7 13:54 .ipynb_checkpoints
-rw-r--r-- 1 dafuq 197121 29504 Jul 22 15:55 1_Using-Jupyter-Lab.ipynb
drwxr-xr-x 1 dafuq 197121 0 Apr 14 16:19 images

Getting familiar with shortcuts (Ctrl+Shift+C)

The easiest way to get familiar with the commands you can run and their keyboard shortcuts, is to use

the commands panel (Ctrl+Shift+C or click the Icon on the left panel selection).

Using commands panel you can also execute commands, which don’t have a shortcut like Restart
Kernel and Run All Cells.... Since the search is a fuzzy search it also helps to find commands,
which command name you don’t know exactly or to simply look up which commands you can use.

Getting help information

In Python proper written functions/classes/methods contain information about what they are sup-
posed to do and sometimes even usage examples. This is called the docstring and gives the first help
in how to use something. In jupyter lab this docstring can be accessed in multiple ways.

12

https://en.wikipedia.org/wiki/Approximate_string_matching

Print help (?)

In jupyter lab the ? is a special symbol. If it’s written before or after an expression, the docstring of
this expression will be written to the output cell, when the cell is executed.

Note:

If a function/method is being called (has () at the end), this doesn’t work and will give you an error.

[4]: %%bash?

Docstring:
%%bash script magic

Run cells with bash in a subprocess.

This is a shortcut for `%%script bash`
File: c:\anaconda3\lib\site-packages\ipython\core\magics\script.py

[5]: ?%%bash

Docstring:
%%bash script magic

Run cells with bash in a subprocess.

This is a shortcut for `%%script bash`
File: c:\anaconda3\lib\site-packages\ipython\core\magics\script.py

Quick help (Ctrl+Shift)

Another method to get a fast glimps of the docstring is the quick help function, which is triggered
by pressing Ctrl+Shift and will open a small popup window above your cursor. This is especially
useful if you just want to look up the function-/method-signature, because you forgot which argument
was at which place or you aren’t sure what a keyword argument (kwarg) was called.

13

Inspector/Contextual Help window(Ctrl+I)

Last but not least, you can also open the Inspector/Contextual Help window by pressing Ctrl+I. The
inspector shows the docstring of the code while you are typing it, in separate tab which you can i.e.
arrange right next to your code. This is especially useful if you are learning to program or are starting
to work with a new package/library and aren’t familiar with all its functionality yet.

Note:

The Inspector was renamed to Contextual Help in jupyterlab 1.0 and also changed usage be-
havior. While the Inspector listened to keyboard input and changed its content while typing, with
the Contextual Help you select elements by clicking at them and they stay the same while you type.

Cutomizing jupyter-lab

Jupyter lab has a lot of extensions (plugins), which can give you a better experience writing your
code and change your editors capabilities how you need them. A list of great extensions can be found
at awesome-jupyterlab.

Our recommended extensions are:

• Jupyter Widgets Adds sliders and other dynamic inputs you can use to make your notebooks
more interactive.

• Spellcheckeing Adds spellchecking for english language in markdown cells.

• Variableinspector Adds a tab showing the variables which exist in the current session.

• Code Formatter Formats your code in the selected style.

• Jupyterlab Celltags Allows to add Tags (meta information) to cells. This addon is part of the
jupyter lab core since the 2.0 release.

• Jupyterlab TOC Adds a TOC (Table of Content) navigation panel.

• Jupyterlab Shortcutui Adds a graphical shortcut editor.

14

https://github.com/mauhai/awesome-jupyterlab
https://ipywidgets.readthedocs.io/en/latest/user_install.html
https://github.com/ijmbarr/jupyterlab_spellchecker
https://github.com/lckr/jupyterlab-variableInspector
https://github.com/ryantam626/jupyterlab_code_formatter
https://github.com/jupyterlab/jupyterlab-celltags
https://github.com/jupyterlab/jupyterlab-toc
https://github.com/jupyterlab/jupyterlab-shortcutui

Common Pitfalls/Missconceptions

Execution order matters/Interpreter runtime memory

Since normally all cells in jupyter-notebook are executed with the same kernel, the order of execution
matters. If you for example define a variable a=2 at the start of a notebook, run some code depending
on it (i.e. [In]a+5, [Out] 7) in a different cell, redefine a=3 at the end of your notebook and run the
cell with code depending on a again, it will give a different output ([Out] 8) since a has changed.
This allows you to run parts of you code without having to rerun everything again (i.e. very useful if
you have a long running simulation and want to style the plot of the results). But it can also lead to
problems, when we don’t take this behavior into account when writing the code.

Common Problems:

• Broken Notebook - The most severe problem that can occure is that when you open your note-
book again and want to run your code (Run All Cells), it fails at a specific cell telling you that
something (i.e. function, variable) isn’t defined. The most common reason for that is that you
deleted/renamed that ‘something’/its cell in the last session or defined ‘something’ in a cell be-
low the cell where it is first needed. Since the kernel still remembered/already knew it (deleting
from the notebook 6= deleting from the kernel), everything worked fine, but when you started a
new session this ‘something’, wasn’t there when it was needed, since the cells are evaluated in
order from top to bottom.

Note:

To solve ordering problems you can move cells in the notebook.

• It doesn’t change, even so it should - This is an error, which will lead to a Broken Notebook
and often wasts quite some time to find. This mostly happens if you rename (refacor) a func-
tion/variable in one part of your code, but forgot to change it somewhere else, since the kernel
remembers the old function/variable, changing the new one won’t affect parts where the old
name is still used.

Solution

To make sure that the notebook runs properly even if you run it for the first time, you should always
confirm that everything it is runnable with a fresh kernel after refactoring code or before stopping to
work on it. You can confirm this by running Restart Kernel and Run All Cells....

Not rendered Plots

By default plots aren’t rendered in the output cells. To activate this for matplotlib (which is also
the default backend for pandas) you need to add the magic command %matplotlib inline or
%matplotlib notebook.

For other libraries like bokhe or ploty there are special plugins needed to work in jupyter-lab, since
they relay on extra javascript code, those plugin are called jupyter extensions.

15

https://github.com/ipython-contrib/jupyter_contrib_nbextensions

ModuleNotFoundError

During this course we will introduce different libraries and how to use them. Depending on your
Python installation, those might not be installed, which will cause the ModuleNotFoundError when
you try to run the examples provided. We recommend to use Anaconda as your installation of choice,
since the installer are available for all major platforms (Linux, Windows and MacOS) and most mod-
ules come as binaries (called wheels in Python), which means you don’t need to compile them your-
self. Also the default Anaconda installer comes with most libraries we present you included. If any
library is still missing you can install it by running:

conda install missing_library_name.

If you don’t want to use Anaconda or this library is only on PyPi (Python Packagagin Index) and not
on Anaconda, you can always install it by running:

pip install missing_library_name.

[6]: import not_a_valid_module

ModuleNotFoundError Traceback (most recent call last)
<ipython-input-6-b58700dcf11b> in <module>
----> 1 import not_a_valid_module

ModuleNotFoundError: No module named 'not_a_valid_module'

4 Examples

5 Cheat Sheets

Collection of cheat sheets for a quick lookup.

5.1 Python

• python-cheatsheet

5.2 Numpy

• 3rd party

5.3 Pandas

• official

16

https://gto76.github.io/python-cheatsheet/
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Numpy_Python_Cheat_Sheet.pdf
https://pandas.pydata.org/Pandas_Cheat_Sheet.pdf

5.4 Datascience

• collection

6 Tutorials

6.1 Python

• WebSites

– pythonprogramming.net

– realpython.com

• Videos

– Learning to program with Python 3 (py 3.7)

• Mobile Apps

– SoloLearn

– ProgrammingHub

7 Credits

7.1 Development Lead

• Sebastian Weigand <s.weigand.phy@gmail.com >

• Deniz Sharideh

7.2 Contributors

None yet. Why not be the first?

8 Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will
always be given.

You can contribute in many ways:

8.1 Types of Contributions

Report Errors

Report errors as an issue at github.

If you are reporting an error, please include:

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

17

http://www.utc.fr/~jlaforet/Suppl/python-cheatsheets.pdf
https://pythonprogramming.net/introduction-learn-python-3-tutorials/
https://realpython.com/start-here/
https://www.youtube.com/watch?v=eXBD2bB9-RA&list=PLQVvvaa0QuDeAams7fkdcwOGBpGdHpXln
https://www.sololearn.com/
https://www.programminghub.io/
mailto:s.weigand.phy@gmail.com
https://github.com/students-teach-students/python-tools-for-students/issues

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open
to whoever wants to implement it. You might also encounter typos, spelling and grammar errors, we
appreciate all help we can get to make this the best learning experience possible, so don’t be shy and
contribute. :)

Implement Topics

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help
wanted” is open to whoever wants to implement it. Tell us that you are working on this topic, so
the same work won’t be done by two people at the same time. Of course if someone is already
working on a topic you can always offer your help.

Write TL;DR’s or Examples

We will leave the writing of TL;DR’s and examples mostly to the community, since this is the perfect
opportunity for you to get involved. Not only is it a great start to work with git on an open source
project, it will also help you to amplify your understanding of the tools we are teaching you. If you are
writing examples make sure that they are documented (markdown cells) and explain what/why it is
being done. Also make sure that the example you are using isn’t so specific to your field of studying,
that others will have problems understanding (i.e. no detailed knowledge of quantum mechanics
should be needed to understand your example.)

Submit Feedback

The best way to send feedback, is to file an issue at Github.

If you are proposing a topic:

• Explain in detail what you would want to learn and why it should be included.

• Keep the scope as narrow as possible and add an example, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

8.2 Structure of the project

If you don’t know which number the chapter you want to work on should have, have a look at issue
#3, where the structuring of the course is discussed.

To make navigating through the material consistent and also give new (and old) contributors a good
starting point on how to organize and name files and folders, the following structure was proposed in
issue #9:

Repository-root
|-- material

|-- <chapter_nr>_<chapter_name>
|-- data
|-- images
|-- <chapter_nr>_<chapter_name>.ipynb
|-- TL_DR.md
|-- additional_materials.md
|-- code_snippets.md
|-- Examples

|-- data
(continues on next page)

18

https://github.com/students-teach-students/python-tools-for-students/issues
https://github.com/students-teach-students/python-tools-for-students/issues
https://github.com/students-teach-students/python-tools-for-students/issues
https://github.com/students-teach-students/python-tools-for-students/issues/3
https://github.com/students-teach-students/python-tools-for-students/issues/9

(continued from previous page)

|-- <data_description>-example1.txt
|-- ...

|-- example1.ipynb
|-- ...

|-- cheat_sheets.md
|-- tutorials.md

|-- docs
|-- material

|-- <chapter_nr>_<chapter_name>
|-- <chapter_nr>_<chapter_name>.nblink

|-- examples
|-- <chapter_nr>_<chapter_name>

|-- example1.nblink

8.3 Getting Started!

Ready to contribute? Here’s how to set up python-tools-for-students for local development.

1. Fork the python-tools-for-students repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/python-tools-for-students.git

3. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

4. Install all required libraries:

$ pip install -r requirements_dev.txt

5. Start jupyter lab in the folder of your local copy and write the changes you want.

6. Make sure all tests pass:

$ tox

7. Commit your changes and push your branch to GitHub:

$ git add .

$ git commit -m "Your detailed description of your changes."

$ git push origin name-of-your-bugfix-or-feature

8. Submit a pull request through the GitHub website.

Note: You might need to install git if you haven’t done so before. Especially for beginners we
recommend GitKraken, which is a graphical user interface for git. But you should definitely learn
how to work with git in a terminal, since you might have to work in an environment where you
won’t have a graphical user interface (i.e. ssh connection to a server/cluster where you want to do
your calculation on) or something doesn’t work as expected and you need to fix it.

Note for Windows users:

If you want the care free package of a ‘properly’ configured Posix like shell (more powerful and feature
rich command line), just install cmder full with get-cmder.

19

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://www.gitkraken.com/
https://cmder.net/
https://github.com/s-weigand/get-cmder

8.4 Testing

To make sure that all our notebooks are working properly and have a uniform code style, we test them
with:

• tox

• pytest

• nbval

• flake8-nb

Where tox, pytest and nbval ensure that the provided notebooks reproducibly work with all sup-
ported python versions and flake8-nb ensures the code style.

nbval

In some cases the output might depend on the operating system/current time or you want to show-
case an Exception, in those cases you can use Tags (meta information) to mark a cell for nbval to
change its testing behavior. For more information have a look at nbval’s documentation Avoid output
comparison for specific cells and Using tags instead of comments .

flake8-nb

As for nbval we also encourage to use cell tags to configure the reported code style violations of
flake8-nb. Please only use this scarcely and when absolutely needed, i.e. if you have a cell with
different language code or if you want to showcase bad code.

8.5 Add your changes to the docs

To make the provided information more accessible (i.e. on mobile when you are on your way to
university), we also generate documentation as an html page, PDF and epub, which is published at
Read The Docs.

Adding notebooks

Notebooks are included in the docs using nbsphinx and nbsphinx-link. In order to add a notebook
to the docs, you need to create a *.nblink file in the appropriate folder in the docs and add its path
to docs/material.rst / docs/examples.rst. If your notebooks contain extra media like images,
you need to add them as extra-media entry in the *.nblink file.

Adding markdown files

Markdown files are included in the docs using myst-parser. Sadly sphinx does not recognize files
outside of the docs root folder (docs). So in order not to copy files and maintain two versions, the
best solution is to create a new file inside the docs folder with the following code, pointing to the
appropriate file.

```{include} <relative_path_to_the_file_to_be_included>

```

After that you can include it in any *.rst file as you would normally.

20

https://tox.readthedocs.io/en/latest/
https://pytest.org/en/latest/
https://github.com/computationalmodelling/nbval
https://flake8-nb.readthedocs.io
https://realpython.com/python-code-quality/
https://nbval.readthedocs.io/en/latest/index.html#Avoid-output-comparison-for-specific-cells
https://nbval.readthedocs.io/en/latest/index.html#Avoid-output-comparison-for-specific-cells
https://nbval.readthedocs.io/en/latest/index.html#Using-tags-instead-of-comments
https://flake8-nb.readthedocs.io/en/latest/usage.html#cell-tags
https://readthedocs.org/projects/python-tools-for-students
https://nbsphinx.readthedocs.io/
https://github.com/vidartf/nbsphinx-link
https://myst-parser.readthedocs.io/en/latest/index.html
https://www.sphinx-doc.org/en/master/usage/quickstart.html

Building the docs locally

To build the documentation, open a terminal, navigate to the docs folder and run make html (Posix
like) / make.bat html (Windows). This will create the documentation inside the folder docs/_build/
html.

Note: For the docs to be build it is mandatory that you use a conda installation of python or at least
have conda installed. This is due to the fact that the notebook inclusion in the docs utilizes the tool
pandoc. Even so pandoc is present in many package manager repository indices, this is mostly a too
old version, which is why we recommend to use the version provided by conda.

$ conda install -c conda-forge pandoc

This also requires that the terminal you execute the make command with knows about the conda
binary path/s (see Using Anaconda only if needed).

Note for Windows users:

If you are on Windows and want to use git bash for Windows, you might not have the
make command installed. To install make into git bash you can follow this guide or use
install_make_git_bash_standalone.bat from get-cmder.

8.6 Style guide

To make the learning and reading experience as pleasant and uniform as possible, as well as giving
you pointers to possible pitfalls, we added this style guide. Before you write new content you should
check back here, see if something has changed and also refresh your memory on what the style rules
for this project are.

• Always capitalize keys for keyboard shortcuts (i.e. Shift+Ctrl)

• Always write commands which can be executed in lower case (i.e. Jupiter-lab should be
jupyter-lab)

• No starting or tailing whitespaces in inline equations markdown cells (i.e.$ \int $ should be
\int), since this will break in the docs (see)

8.7 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

• Respect our folder structure and style guide, since this guarantees a consistent and easy to
navigate experience for everyone.

• Make sure that the notebooks work, when running Restart Kernel and Run All ... and the
tests pass.

• If your code needs a 3rd party library to work and it is not yet present in the requirements.txt,

please add it with a minimum version (i.e.: package_name>=1.0.0).

• Add your changes to the docs and make sure that they render properly.

21

https://pandoc.org/
https://anaconda.org/conda-forge/pandoc
https://python-tools-for-students.readthedocs.io/en/latest/getting_started.html#using-anaconda-only-if-needed
https://gitforwindows.org/
https://gist.github.com/evanwill/0207876c3243bbb6863e65ec5dc3f058#make
https://github.com/s-weigand/get-cmder
https://nbsphinx.readthedocs.io/en/0.4.3/markdown-cells.html#Equations

9 Indices and tables

• genindex

• modindex

• search

22

	python-tools-for-students
	Why python?
	Where are we with this project right now?
	What do you need?
	Who are we?
	How can YOU help?
	Why in english?
	Contributors ✨

	Getting started
	Run it locally
	Run it in the cloud

	Chapters
	Using JuPyteR-Lab

	Examples
	Cheat Sheets
	Python
	Numpy
	Pandas
	Datascience

	Tutorials
	Python

	Credits
	Development Lead
	Contributors

	Contributing
	Types of Contributions
	Structure of the project
	Getting Started!
	Testing
	Add your changes to the docs
	Style guide
	Pull Request Guidelines

	Indices and tables

